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Abstract: Retinal image-based eye motion measurement from scanned ophthalmic imaging
systems, such as scanning laser ophthalmoscopy, has allowed for precise real-time eye tracking
at sub-micron resolution. However, the constraints of real-time tracking result in a high error
tolerance that is detrimental for some eye motion measurement and imaging applications. We
show here that eye motion can be extracted from image sequences when these constraints are
lifted, and all data is available at the time of registration. Our approach identifies and discards
distorted frames, detects coarse motion to generate a synthetic reference frame and then uses
it for fine scale motion tracking with improved sensitivity over a larger area. We demonstrate
its application here to tracking scanning laser ophthalmoscopy (TSLO) and adaptive optics
scanning light ophthalmoscopy (AOSLO), and show that it can successfully capture most of the
eye motion across each image sequence, leaving only between 0.1-3.4% of non-blink frames
untracked, while simultaneously minimizing image distortions induced from eye motion. These
improvements will facilitate precise measurement of fixational eye movements (FEMs) in TSLO
and longitudinal tracking of individual cells in AOSLO.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fixational eye movements (FEMs) are an essential aspect of normal human vision that keep
the eyes in constant motion [1]. FEMs are physiologically important and serve several useful
purposes [1–3]. Though FEMs have canonically been described as consisting of three classes of
motion: microsaccades, drift and tremor [4], recent evidence suggests that any tremor in the eye
during fixation is likely to be extremely small and thus inconsequential for vision [5]. FEMs
are a source of image distortions in ophthalmic instruments that scan an imaging beam across
the retina of awake human observers, such as scanning laser ophthalmoscopy (SLO) and optical
coherence tomography (OCT). Scanned systems typically scan the retina in a raster pattern
implemented with a relatively slow scanner at the frame rate and a faster scanner at the line rate.
SLO line rates are often on the order of ∼10–14kHz, so each line is usually considered to be free
from eye-motion based distortions. However, intra-frame image distortions arise because eye
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movements can be much faster than the relatively slow frame rate of scanned ophthalmic imaging
systems that typically operate at video rates (∼24–30 Hz). Fortunately, when image sequences
are acquired on scanned systems, the motion of the eye is encoded into the image sequence,
permitting the motion to be recovered through the application of appropriate techniques [6,7].

Several methods have been developed to recover eye motion from retinal images acquired with
scanned ophthalmic systems, such as SLO [7–9] and its higher-resolution implementation in
adaptive optics scanning light ophthalmoscopy (AOSLO) [6,10]. Recovery of eye motion for
image registration is essential in ophthalmic imaging so that several images from a sequence can
be integrated or averaged to generate a high signal to noise ratio (SNR) image of the retina from a
sequence of low SNR images. Scanned ophthalmic image registration algorithms have often used
a cross-correlation method to compute the offset between a reference image and each image (or
sub-image) in an image sequence. To increase the temporal rate of motion measurement, reduce
computational cost, and achieve superior results for image registration, most implementations
now divide each frame into multiple image strips with a height of several scan lines [11].

Strip-based image registration methods that track motion based on using a single imaging
frame as a reference image have successfully achieved high performance at real-time data rates
and enabled previously unattainable engineering and scientific aims, such as real-time optical
stabilization [11,12] and single-cell psychophysics in AOSLO [13,14]. However, this high
performance for real-time applications comes at the cost of a high error tolerance and a reduced
sensitivity to large amplitude motion. A high error tolerance results in either dropped strips or
poor registration matches. A high error tolerance is acceptable (and sometimes advantageous) for
some retinal imaging and most psychophysical applications. Psychophysical applications often
tend to consist of hundreds or thousands of trials, so can usually simply just exclude those trials
from analysis when the algorithm dropped a strip or gave a bad match. Poor-matches can occur
when the image is of poor quality due to optical factors, so the dropping of these poor-quality
strips can be advantageous when the objective is to build a registered and averaged image from
only the highest quality image strips (e.g. confocal AOSLO). However, the same error-tolerance
is unacceptable when the objective is precise eye motion measurement (e.g. to quantify fixational
eye movements for tens of seconds or up to minutes), or in cases with low photon flux (e.g. in
autofluorescence or non-confocal AOSLO).

A drawback to the single reference frame approach is that it is insensitive to motion that moves
the field of view outside the area imaged in the reference frame; this is sometimes referred to as a
‘frame-out’ error. We and our colleagues previously demonstrated methods to increase sensitivity
to large amplitude motion for eye tracking in AOSLO using hybrid imaging approaches [11,15].
These add an additional wide-field scanned system to track large amplitude motion in real-time
at a coarse scale to drive a tip/tilt mirror to stabilize the small field of view AOSLO enough to
prevent most ‘frame-out’ errors. However, these solutions increase the complexity of the imaging
system and the data acquisition and image processing pipelines substantially.

Finally, previous approaches that used only a single reference frame do not mitigate or remove
the intraframe distortions present within the reference frame but rather encode the reference frame
distortion into all the images in the registered image sequence. Though within-frame distortions
introduced from the reference frame are usually small (on the order of several microns), they
have historically made it extremely difficult to track individual cells longitudinally in AOSLO
[16]. Some methods have been proposed to correct intraframe distortions in the reference frame,
such as using lag-bias, however these methods work only when the eye movements are stochastic
and radially symmetrical, or the predominate drift is compensated with corrective microsaccades.
Additionally, they are more likely to fail for large amplitude of eye movement [17,18].

Here we implement a new approach that solves these problems for strip-based registration
and demonstrate its applications in TSLO and AOSLO. Free from the constraints imposed by
real-time eye-tracking, we devised a more robust approach that achieves our goals for a technique
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that: 1) captures the precise motion of nearly all the images in each sequence for eye motion
measurement and light starved imaging applications; 2) is sensitive to motion larger than the field
of view of a single frame; and 3) reconstructs the spatial arrangement between image features
consistently and accurately. These goals are achieved through the implementation of several
novel steps compared to previously published approaches, including: 1) a pre-processing step to
achieve robust eye motion measurements; 2) a large amplitude motion detection procedure that
involves evaluating sub-images to detect motion outside the bounds of a single image frame and
3) the generation of a synthetic reference frame to mitigate the within-frame distortions that are
present in every single individual frame acquired from scanned ophthalmic imaging systems and
every image registered using a single reference frame approach.

We show here applications of the technique for measuring FEMs with TSLO and for image
registration in AOSLO and compare the results of this method to the real-time method of Yang
et al. [11]. Our approach was able to track around 99% of all image strips, on average, after
excluding blinks and even in the cases of subjectively lower quality data for both AOSLO and
TSLO. We also demonstrate that image distortions are substantially minimized with our new
technique.

2. Methods

2.1. Participants

All experiments were approved by the University of Pittsburgh Institutional Review Board and
adhered to the tenets of the Declaration of Helsinki. Written informed consent was obtained from
all participants following an explanation of experimental procedures and risks both verbally and
in writing. Participants ranged in age from 14 to 59 (average: 20; female: 20; male: 21) and
were compensated for their participation. To ensure that imaging was safe, all light levels were
kept below the limits imposed by the latest ANSI standard for safe use of lasers [19].

2.2. Data sources

We evaluated our approach using sixty image sequences that had been previously acquired on our
TSLO and AOSLO systems for ongoing studies [20,21]. Since we were interested in evaluating
performance on a range of image qualities, we selected ten image sequences from each system in
three general levels of image quality. Images were graded subjectively by two of the authors (MZ
and EG) to be of either low, medium, or high quality; both graders had to agree on the grading
for the image sequence to be included in the evaluation dataset. Examples of each quality level
for each device are shown in Supplementary Fig. S1 in Supplement 1.

2.2.1. Tracking scanning laser ophthalmoscopy (TSLO)

The tracking scanning laser ophthalmoscope (C. Light Technologies, Inc., Berkeley, CA) has
been described in detail [12]. An 840 nm (50 nm bandwidth) super luminescent diode (SLD)
provided illumination over a field size of 5°×5°. Participants were imaged sitting in a chin
rest that was stabilized with temple pads. Image sequences (512×512 pixels) were acquired
monocularly, from the left eye, without dilation, at 30 Hz for 30 seconds.

2.2.2. Adaptive optics scanning laser ophthalmoscopy (AOSLO)

The Pittsburgh adaptive optics scanning laser ophthalmoscope has been described in detail
elsewhere [21]; image sequences were used from the confocal imaging channel only. A 795 nm
(FWHM= 15 nm) SLD provided illumination over a field size of 1.5°×1.5°. Image sequences
(512×496 pixels) were acquired monocularly, from either the left or right eye, with dilation, at
29 Hz for 10–180 seconds.

https://doi.org/10.6084/m9.figshare.14221700
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2.3. Algorithm workflow

The algorithm workflow, implemented in MATLAB (R2018a; The MathWorks Inc., Natick,
MA), is outlined in Fig. 1. It consists of three main steps: 1) pre-processing and detection of
highly distorted frames; 2) coarse registration, large motion detection and synthetic reference
frame generation; and 3) fine strip-level registration. The overall strategy follows the general
framework described by Stevenson and Roorda [6] and that we and our colleagues have built
upon [10–12]. However, we have implemented a new end-to-end approach here to achieve the
goals outlined previously. Each step is described in detail in the sections below. Our workflow
begins with blink detection followed by a pre-processing stage.

2.3.1. Blink detection

Blinks were detected using a rudimentary intensity threshold to logMean(i), where i∈[1, 2,. . . ,m]
is the index of each image and m is the total number of images in the sequence. LogMean(i) is
computed by normalizing the mean intensity of each image (i) to the interval of [0, 1], followed
by applying the common logarithm on the normalized mean. Note that NaN will be used if
the common logarithm of 0 is encountered and hence will not be considered in the threshold
calculation. The threshold was defined as: blinkth=minimum (logMean(i))/3.5. Images with
logMean ≤ blinkth are marked as blinks and excluded from further processing. It should be noted
that this method may erroneously detect blinks for motion traces that do not contain a blink and
have uniform intensity across all frames.

2.3.2. Pre-processing

Pre-processing reduces noise, improves contrast, and minimizes large gradients in intensity
across the field of view. Non-uniform image intensity across the field of view can result from
highly scattering structures in the normal retina, such as the foveal reflex; they can often also
arise anywhere in the retina in disease states such as age-related macular degeneration. A strong
foveal reflex is often seen in younger healthy eyes and was observed in much of our TSLO data.
Pre-processing started with Gaussian filtering, implemented with MATLAB’s built-in imgaussfilt
function (with σ= 20), to remove high-frequency noise. This was followed by contrast-limited
adaptive histogram equalization (CLAHE) using the adapthisteq function (with ClipLimit= 0.05).
CLAHE serves to effectively improve local image contrast. These pre-processing steps were
implemented with the same fixed parameters for both TSLO and AOSLO and improved the
detection of the normalized cross-correlation (NCC) peak that is used for subsequent processing
stages (see Suppl. Fig. S2 in Supplement 1). It should be noted that these come at little
computational cost, representing a negligible proportion of the overall processing time for each
image sequence (∼0.4%).

Highly distorted images were identified by computing the NCC for each pair of consecutive
images in each sequence, similar to Salmon et al. [22]. All NCC computations were performed
with MATLAB’s built-in normxcorr2 function, using the CUDA implementation with elements
of the Parallel Computing Toolbox. Registration was carried out on machines equipped with
Nvidia GPUs (GTX 1080). Since highly distorted images have little or no overlapping features
with both the previous and consecutive frame in the sequence, the peak of the NCC matrix
computed between these frames is low. We identified candidate distortion frames based on this
principle by applying a simple threshold based on the statistics of the image sequence. When the
peak in the NCC matrix between the previous frame and consecutive frame were both less than
the threshold, we considered these frames to be distortion frames. The threshold was defined as
NCC < µ - 0.8δ, where µ and δ are the average and SD of the NCC peak for the entire image
sequence. Distortion frames were excluded from further analysis.

https://doi.org/10.6084/m9.figshare.14221700
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Fig. 1. Algorithm workflow. An image sequence is loaded to begin the pre-processing
stage (top grey rectangle). Frames with intensity (i) below the blink threshold (blinkth) are
discarded while those above undergo noise reduction and contrast enhancement. This is
followed by the detection of distortion frames (NCC on consecutive frames). Frames below
threshold 1 (th1) are rejected as highly distorted frames. Frames above th1 are passed to
the next stage for coarse registration, large motion detection and synthetic reference frame
generation (middle grey rectangle). A reference frame is selected manually, followed by
a full frame offset NCC calculation using the manually selected reference. Frame offsets
detected with an NCC peak greater than threshold 2 (th2) are applied to generate the synthetic
reference image. Those frames below th2 are divided into sub-images (see Fig. 2) for large
motion detection (NCC between sub-images and synthetic reference). Those sub-images
with an NCC peak below th2 are discarded while those above th2 are used to detect the large
motion offsets that are merged with the offset data used to create the synthetic reference. The
merged offset data is then passed to the final stage of processing, fine strip-level registration
(bottom grey rectangle). Strip-level registration is computed by dividing each frame with
offset data into n strips. The full frame offset data is used to determine the position of the
corresponding reference ROI on the synthetic reference. Fine-scale motion is detected by
computing the NCC between the reference ROI and the strip (see Fig. 3). A strip-level
motion trace is then output.
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2.3.3. Coarse alignment and identification of candidate ‘large motion’ frames

This step computes coarse frame-to-frame offsets and synthesizes a composite reference frame for
fine motion extraction. This begins with the selection of a reference frame by the experimenter
(e.g. Fig. 2(a)). The criteria we used for selecting a reference frame was that it should be of the
average image quality of the rest of the sequence (i.e. not blurry or of low quality) and free from
visible distortions. It should be noted that even though most individual frames do not contain
visible distortions (such as visible compression or shearing artifacts; see Suppl. Fig. S3 in
Supplement 1 for examples), all frames do contain distortions due to eye motion during the frame.
This is due to the slow frame rates of the imaging systems; since it takes 33 ms to acquire a
single frame at 30 fps there will necessarily be some motion during this interval. These insidious
distortions prevent us from achieving distortion free imaging with a single reference image and
that is why we follow this step with the generation of a synthetic reference frame to minimize
these within-frame distortions that are present in every single frame of every image sequence.

Fig. 2. Coarse alignment for reference synthesis and detection of ‘large motion’
candidates. An image from the sequence (TSLO in this example) is chosen manually to
serve as the reference for coarse alignment (a). Coarsely aligned frames are averaged to
generate a synthetic reference frame (b). Large candidate motion frames, (c) and (d), are
divided into 7 strips both vertically (c) and horizontally (d) and cross-correlated with the
synthetic reference frame (b) to capture large amplitude motion.

The full-frame NCC is then computed between each of the frames and the synthetic reference
frame for motion detection (see Fig. 1), as we and others have described previously [11–13,23]. In
practice, some image frames may have a small overlap with the reference frame due to relatively
large eye motion (e.g. Fig. 2(c)), resulting in a reduced NCC peak. To maximize the chances that
these frames could be captured in our analysis, we set a second threshold at µ - 0.6δ to extract
these frames as a group of candidates of ‘large motion’ frames; large motion frame candidates
were then reserved for additional processing steps (described below).

2.3.4. Generation of a synthetic reference frame and evaluation of large motion candidates

The next step was to synthesize a larger reference frame for the fine motion trace computation. A
larger reference frame enables motion that goes beyond the bounds of a single reference frame
to be captured. This was generated by simply averaging the registered images from the coarse
alignment step (see Fig. 2(b)). Next, we attempted to capture the coarse offsets for the images
that we determined to be large eye motion candidates. We did this by dividing each of those
frames into seven strips vertically and horizontally (see Fig. 2(c) and 2(d)). Strip size for this
procedure was 512×128 pixels or 128×512 pixels, with 64 pixels of overlap. We then calculated
the NCC between each strip and the synthetic reference image. The offset of the strip with the
highest NCC peak was selected to represent the true offset of the corresponding frame. If the
NCC peak of all the strips for that frame was still low (< µ - 0.6δ), the image was rejected from
further analysis.

https://doi.org/10.6084/m9.figshare.14221700
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2.3.5. Fine motion trace extraction

In the previous step we identified and flagged distortion frames, computed frame-to-frame offsets,
generated a composite reference frame and evaluated frames with the largest motion. In this step,
we divide each image whose coarse motion was successfully captured, into multiple image strips
as shown in Fig. 3. The strip size and overlap can be specified by the user; we used 16 strips
per image (i.e. 32×512 pixels) herein for a nominal temporal sampling rate of 480 Hz for the
motion traces. For each strip, we identified its coarse matching region in the synthetic reference
frame from its coarse frame offset. We then extract a larger region of interest (ROI) reference
strip by extending the region one strip height above and one strip below the coarse matching
region (Fig. 3(a)). We then use this ROI reference strip for the NCC computation for that strip
rather than the whole synthetic reference frame. This approach reduces the computation cost and
has the potential to increase accuracy, since the best matching location is usually within the ROI
reference strip.

Fig. 3. Strip-level motion trace extraction. The synthetic reference image (a) serves as
the source of reference ROIs for fine strip-level motion extraction. Each target frame (b)
is broken up into strips (e.g. strip k, outlined in red in b) and its probable position on the
synthetic reference (shaded area in a) is estimated from its coarse frame offset. A region of
interest (ROI) reference area (denoted by the dashed red rectangle in (a)) is then defined and
fine motion is extracted by computing the NCC between each strip and its corresponding
reference ROI area. Images are from TSLO.

For the example shown in Fig. 3, if Yfrm_offset(i) and Xfrm_offset (i) denote the frame offset of
the raw target frame (Fig. 3(b)), and the region of its kth strip is [xk, yk, w, h], where (xk, yk)
is the starting position of the strip, w is the width and h is the height of the strip (in our case
w= 512 pixels, and h= 32 pixels), then its matching region in the reference frame (shaded red
area in Fig. 3(a)) can be determined by [xref , yref , w, h], where

xref = xk + Xfrm_offset(i) (1)

yref = yk + Yfrm_offset(i) (2)

and its ROI reference strip can be determined by [xroi, yroi, wroi, hroi], where wroi equals to the
width of the synthetic reference frame, and

xroi = 1 (3)

yroi = yref − h (4)
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hroi = 3 ∗ h (5)
then we calculate the NCC using this strip and its corresponding ROI reference strip to identify
the best matching location, and get its strip offset to represent the eye motion. In those rare
occasions when two peaks were identified we used the one closest to the frame offset as the strip
offset. We repeat this operation on all the frames to extract the strip offsets for the entire image
sequence.

2.4. Performance assessment

2.4.1. Comparison to benchmark

Since no ground-truth of the motion of the eye exists for our datasets, we chose a few different
ways to evaluate its performance. One approach we took was to compare our new method to the
registration method of Yang et al. [11] that we considered for the purposes of this report to be
our gold-standard benchmark for AOSLO. Unfortunately, there does not exist a corresponding
method for TSLO and there are fundamental differences between the two techniques that make
this an imperfect comparison with several drawbacks (see discussion).

In our first attempted comparisons, we evaluated the results of each algorithm using comparable
user-defined variables that govern the strip-wise registration, including strip size, number of
strips and strip rejection threshold. As our studies of fixational eye movements required motion
traces at a nominal temporal sampling rate of at least ∼480 Hz, we developed our approach using
16 strips per frame and a strip height of 32 pixels and used these settings in each algorithm for
our initial tests for both AOSLO and TSLO datasets. However, we found that these parameters
often caused the benchmark method to perform much more poorly on the AOSLO data than it
did with its default parameter set. So, we tested a range of values and settled on using the default
settings for AOSLO in the implementation of the offline digital registration version we had access
to, that was implemented with a default of 15 strips per frame and a strip height of 64 pixels as
this empirically gave the best results. The strip rejection threshold also differed as we used a
variable threshold (see above), while the benchmark used a fixed threshold of 0.75.

To compare registration methods, we evaluated several aspects of the results, including: 1)
the proportion of successfully registered data; 2) the standard deviation of pixel intensity in the
registered image sequences; and 3) the energy of the high spatial frequency information in the
final registered and averaged image. We also assessed structural repeatability in the registered
and averaged images by comparing the variability in the spatial relationship between image
features in the resulting images when different starting reference frames were manually selected.

The proportion of tracked frames was computed by dividing the count of successfully tracked
frames by the total number of frames in the sequence after excluding the blinks. It should also be
noted that blinks are detected differently in the benchmark algorithm; it uses a cross-correlation
threshold to detect blinks [11] rather than the intensity-based approach we use here. For our
fixational eye motion measurement work using TSLO, we excluded from analysis discontinuities
in motion traces of less than a single frame, so compare the proportion of tracked frames here for
both TSLO and AOSLO.

The variation in pixel intensity between the registered and unregistered image sequences was
evaluated based on the hypothesis that after registration each pixel remains fixed on the same
structure and thus experiences less variability in intensity over time than in the raw data where
each pixel continuously sweeps across different structures. To assess this, we computed the
standard deviation (SD) of each pixel across time; this was compared between the original and
registered image sequences. This was done for cropped regions about the center of 256×256
pixels each of the original and registered image sequences to exclude the margins of the image that
may have had few strips contributing to each pixel and to ensure that the same area was compared.
In addition, we also evaluated the SD of a registered image sequence that was composed only
of frames that were dropped by the benchmark method but successfully tracked by the present
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approach. This allowed us to evaluate whether the additional frames tracked by the present
approach were registered to the same level as those that were tracked by both.

The image energy of the high spatial frequencies in the image was computed using the
registered and averaged images produced from each algorithm through the following steps: Each
averaged image was filtered using a high pass filter with a normalized cutoff frequency of 0.02;
the spatial variance was computed. This metric informs about the amount of energy in high
spatial frequency features and therefore its value will decrease as image blur increases [24].
Finally, we computed the difference between the image energy generated from both registration
methods. We plotted this difference divided by the energy of averages registered with our method
in order to show the difference in energy as a percentage of the total energy of the averages.

2.4.2. Manual landmark-based performance evaluation

Finally, we also employed a manual method to evaluate whether the algorithm was appropriately
registering image features that were easily identifiable by eye in the image sequence. To do this,
we randomly picked 20 frames from each image sequence and manually marked the same features
that were easy to identify in the images (e.g. vessel crossings). We selected several landmarks for
each frame (see Fig. 4). Multiple landmarks were chosen across the field of view to evaluate strip
level accuracy across the entire image and to ensure that as the eye motion moved the field of
view from frame to frame, that some landmarks would be visible in each image in the sequence.
The manual marking was carried out by two independent graders, to allow us to compare the
different human graders to one another and to the different registration algorithms. Bland-Altman
[25] plots were generated to evaluate the agreement between the different methods.

Fig. 4. Manual landmarking. Several vessel landmarks were marked manually in
MATLAB. Screenshots from the marking script are shown here with several landmarks
marked on the synthetic reference image (a) and then marked in an example target frame
(b). This manual landmarking allowed for a direct comparison between the locations of
readily identifiable image features marked by manual graders and their positions determined
algorithmically. Images are from TSLO.

2.4.3. Structural repeatability across different manually selected reference frames

To evaluate the structural repeatability of the final registered and averaged images, we compared
the results of our algorithm to the benchmark when different reference frames are selected
manually as the starting reference. For this, we used AOSLO image sequences and generated
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registered and averaged images for several starting reference frames. We then co-registered all
of the averaged images generated from each algorithm, using sub-pixel registration [26], and
compared the spatial arrangement of the features across reference frame for each algorithm.
These images were assessed both by visually evaluating animations generated from the registered
images and by carefully comparing the positions of individual cone photoreceptors across the
different images.

2.5. Results

2.5.1. Comparison to benchmark

Across image quality levels in our TSLO datasets, our method successfully tracked 99.79% of
all non-blink frames, leaving only 0.21% of all non-blink frames not successfully tracked. In
comparison, the benchmark successfully tracked 68.89% of all non-blink frames across all quality
levels, leaving 31.11% of frames untracked, on average. It should be noted that the blink detection
methods are different between our method and benchmark, 6.66% of frames were detected as
blinks by our method, while 5.21% of frames were detected as blinks by benchmark. Table 1
lists the results for each of the different quality levels across the TSLO datasets and demonstrates
that there were not major differences in performance across the range of image quality levels
tested for the present algorithm with the proportion of unsuccessfully tracked frames ranged from
0.04–0.43%. In comparison, the benchmark was unable to track between 20.31 and 37.29% of
the frames across each quality level.

Table 1. Proportion of tracked frames calculated excluding blink framesa

System Image Quality Proportion (%) of frames Present method Benchmark

TSLO

All Tracked: 99.79% 68.89%

(n= 30) Not tracked: 0.21% 31.11%

High Tracked: 99.96% 64.27%

(n= 10) Not tracked: 0.04% 35.73%

Medium Tracked: 99.57% 79.69%

(n= 10) Not tracked: 0.43% 20.31%

Low Tracked: 99.85% 62.71%

(n= 10) Not tracked: 0.15% 37.29%

AOSLO

All Tracked: 97.31% 81.76%

(n= 30) Not tracked: 2.69% 18.24%

High Tracked: 99.62% 96.69%

(n= 10) Not tracked: 0.38% 3.31%

Medium Tracked: 96.61% 61.51%

(n= 10) Not tracked: 3.39% 38.49%

Low Tracked: 97.59% 89.43%

(n= 10) Not tracked: 2.41% 10.57%

aThe proportion of tracked frames was similar across the range of image qualities tested for both
the TSLO and AOSLO datasets. A larger proportion of frames were not successfully tracked by
the benchmark algorithm across all test data.

Across image quality levels in our AOSLO datasets, our method successfully tracked 97.31%
of all non-blink frame strips, leaving only 2.69% of all non-blink frame strips not successfully
tracked. In comparison, the benchmark successfully tracked 81.76% of all non-blink frames
across all quality levels, leaving 18.24% of non-blink frames untracked, on average. Again, the
blink detection in our method was different from benchmark: 6.02% of frames were detected
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as blinks in our method, in comparison, the benchmark detected 10.43% of frames as blinks.
Table 1 lists the results for each of the quality levels across the AOSLO dataset. Again, there
were not major differences in performance across the range of the image quality levels tested for
the present algorithm; the proportion of unsuccessfully tracked frames ranged from 0.38–3.39%.
In comparison, the benchmark was unable to track between 3.31% and 38.49% of the frames
across each quality levels. To compare the differences between the results visually, we have
provided a side-by-side comparison between a raw AOSLO image sequence and the registered
image sequences produced by each method in Visualization 1.

To compare differences between the resulting motion traces, we have plotted a trace from
the benchmark overlaid with a trace from the present method for one dimension of a TSLO
image sequence in Supplementary Fig. S4 (see Supplement 1). This comparison shows that
both methods detected most of the actual blink frames, that were verified by visually inspecting
these frames, as blinks (Suppl. Fig. S4, black frames). However, we also see that there were
some differences in the additional frames each method also labelled as blinks. First, we see
that our approach always detected slightly longer blink intervals as our intensity-based approach
labelled as blink frames some lower intensity frames before and after each shared blink interval.
These are the frames that occur during the opening and closing periods of the eye when the eye
is still partially opened (Suppl. Fig. S4, dark blue frames). These frames were untracked by
the benchmark but not marked as blinks (Suppl. Fig. S4 in Supplement 1, yellow frames at 1
and 17 sec). The benchmark also detected a few frames as blinks that were not blinks (Suppl.
Fig. S4 in Supplement 1, cyan frames) due to the cross-correlation threshold-based approach
in the benchmark for blink detection that will mark all frames below the threshold as a blink.
Some highly saturated frames with larger motion were discarded by both algorithms (Suppl. Fig.
S4 in Supplement 1, green frames). Finally, we see that the present method discarded some
frames (Suppl. Fig. S4 in Supplement 1, orange frames) that the benchmark did not, including
some highly distorted frames. To visually evaluate another TSLO eye trace generated by our
approach along with the corresponding image sequence, we have generated the animation shown
in Visualization 2 that shows the cumulative motion trace along with the original image sequence.

Figure 5(a) shows the histogram of the SD across time for each pixel in the original data,
Fig. 5(b) and Fig. 5(c) show histograms of the SD across time for each pixel in the registered
image sequences created for the frames that were successfully registered by both algorithms;
there is less variability in intensity over time in the registered image sequences than in the original
raw data; in addition, there is very little difference in the distribution of each as is demonstrated
by the difference in Fig. 5(e). Similarly, Fig. 5(d) displays the histogram of SD across time for
each pixel in the frames that were successfully tracked by our algorithm but that were not tracked
by the benchmark; again, the distribution is very similar with the difference histogram in Fig. 5(f)
showing very little difference between the two distributions.

2.5.2. Landmark comparison

We compared the manual landmarks made between the two graders and compared the differences
between the graders and the algorithms; we also evaluated the agreement between the two
algorithms. Bland-Altman plots evaluating the agreement between these different measurements
are provided in Supplementary Fig. S5 in Supplement 1. The mean difference between the
manual marking by different graders was less than a pixel (Suppl. Fig. S5(a) in Supplement 1;
–0.1 px horizontally and -0.3 px vertically). This average difference was smaller than the average
difference obtained between the two algorithms that averaged 1.8 px horizontal and 1.5 px vertical
(Suppl. Fig. S5(b)). Comparison between the manual graders and the two algorithms are shown
in Suppl. Fig. S5(c) and Suppl Fig. S5(d) in Supplement 1. The average difference between the
landmark method and our algorithm was a fraction of a pixel: –0.4 px horizontal and –0.2 px
vertical, while there was a larger average difference for the benchmark of 2.2 px horizontal and
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Fig. 5. Standard deviation of pixels across time is reduced similarly for frames
successfully tracked by each algorithm. The distribution of pixel SD across time for the (a)
original raw data, for the registered data with the (b) current method and (c) the benchmark
for frames successfully tracked by each, and (d) for the registered data only successfully
tracked by our current method. (e) is the difference between distributions (b) and (c) showing
that the distribution was similar for these two methods for frames successfully tracked by
each. (f) is the difference between the distributions (c) and (d), showing that there was not a
substantial difference in the proportion of pixels successfully tracked between the shared
frames (e) or the frames only successfully tracked by the current method (f). These are
calculated using the registered image sequences that were constructed using the original raw
8-bit grayscale data (range 0–255).

–1.7 px vertical. Careful inspection of the Bland-Altman plots across the various comparisons
shows that the range defined by the 95% confidence limits is greatest for the landmark versus
benchmark comparison (Suppl. Fig. S5(b); ∼13-14 pixels), while the range observed for the
differences between the present method were similar when compared either to the landmark
or the benchmark (Suppl. Fig. S5(a) and S5(d); ∼11 pixels). The range was smallest when
comparing the two graders to one another (Suppl. Fig. S5(d) in Supplement 1; ∼8 pixels). We
did not observe any trends in the data for increasing (or decreasing) differences with increased
averages across the range of comparisons plotted. Taken together, these plots demonstrate that
there is reasonable agreement across all measurements compared.

2.5.3. Comparison of high spatial frequency information in registered and averaged images

We computed the high energy spectral band for each of the 30 registered and averaged images
obtained in both TSLO and AOSLO. Figure 6 shows the normalized difference between these
energy values across the images. For TSLO, there is a trend of increasing difference in energy
between the two methods as image quality decreases. The inset shows two examples for two
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registered images that fall on different sides of the quality spectrum. For the high quality image
sequence there is no discernable difference in the resulting averaged image (cyan arrow and cyan
outlined images) while the averaged images computed for the low-quality image sequence shows
a much sharper and higher contrast image (green arrow and outlined images). This qualitative
result is borne out in the energy metric. For the first example the difference in energy is almost
none while for the second it is almost 75%. The same metric applied to the AOSLO image
sequences is shown in Fig. 6(b). For this layer (i.e. photoreceptor layer) with this instrument
both algorithms have a similar performance as the difference in energy is mostly close to zero
except for two exceptions. For image sequence number 16 our algorithm seems to underperform
with respect to the benchmark. A region of the averages on the right side of the plot is enlarged
showing how the photoreceptors from the image produced by our method are indeed blurrier
than the ones on the image obtained with the benchmark.

2.5.4. Structural repeatability

For AOSLO, we also evaluated the structural repeatability of the images by comparing the
resulting averaged images when the registration was seeded with different manually selected
reference frames. The differences in the spatial position of image features are best appreciated by
evaluating the animation shown in Visualization 3. This animation shows the averaged images,
co-registered for each method, side-by-side for a representative high quality AOSLO image
sequence when 5 different reference frames were manually selected. It should be noted that
each reference frame appeared to be free from obvious eye motion distortions and considered to
be of equivalent subjective image quality. This animation shows that there is little variation in
the spatial arrangement of image features for our method, while the images obtained from the
benchmark method show variations in the positions of each cone from image to image. This
variation in cell position is evaluated for several cone across these different images in Fig. 7.

Here we show the resulting image for the first reference frame shown in the animation (for
reference frame 1) on the left side. The 8 colored squares arrayed vertically across the image
denote the location of the zoomed in views of those regions that are shown for each of the five
reference frames in the colored rectangles to the right. Within each of these small regions of
interest that are shown with 2x magnification to the right we have denoted the position of two
of the cones in the first image with colored circles. The location of these cones in the image
generated using the first reference frame is overlaid on the other four images to show whether
that cone remained in the same location across references or whether it shifted position. Nearly
every cone was in the same location for each of the cones evaluated in the images generated from
our method. There are some small shifts that can be appreciated in the animation and in a few
instances here we see some small variability in cone position across reference frames (e.g. slight
shifts for the lower cones in the yellow region and in the light blue region for images 3-5). The
variability in cone position was greater for the benchmark method and could result in position
differences across the different images on the order of the size of an individual cone (e.g. orange,
green, and cyan areas).

https://doi.org/10.6084/m9.figshare.14213459
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Fig. 6. Normalized difference in energy of high spatial frequencies between our
method and the benchmark. TSLO (a) and AOSLO (b) registered and averaged images
across all data are compared here. Background color denotes subjective quality of the image
sequence (high= green; medium= yellow; red= low). TSLO datasets showed a range of
differences, with small differences resulting in negligible differences in subjective image
quality (e.g. cyan arrow in (a) and corresponding images traced in same color to the right).
There were larger differences for lower quality image sequences and the present method
produced images with subjectively higher quality than the benchmark (e.g. dark green arrow
in (a) for corresponding averaged images traced in same color to the right). The difference
was very small for most AOSLO image sequences aside from one outlier that demonstrated
better subjective image quality from the benchmark compared to the present method (purple
arrow in (b) and images to right traced in corresponding color). This is appreciated better
by examining the zoomed in section (bottom images traced in yellow, location denoted by
yellow squares in the larger images above).
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Fig. 7. The same spatial arrangement of cells is seen no matter what reference frame is
selected. The present method (a) and benchmark (b) were used to generate five different
registered and averaged images from the same AOSLO image sequence when starting with
the same five different reference frames. The full averaged image generated when using
the first reference frame is shown at left. The overlaid colored rectangles in each denote
the positions of the location of the zoomed in locations shown to the right for each of the
different reference frames. Two cones were circled in the first image (zoomed images, left
column) and then overlaid at the same location on the other images to evaluate cell location
repeatability. Nearly all cones for the present method remained in the same location no
matter what reference was used. This was not the case for the benchmark, where many
cones (e.g. orange, yellow, light blue rectangles) shifted positions depending on the manual
reference frame selected. Differences are small but can be on the order of a whole cone and
are most apparent when toggling between images (see Visualization 3).
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3. Discussion

We have shown here that when time constraints are no longer a limiting factor, additional image
processing steps can be applied to achieve an improved registration result, both for precise
measurement of eye motion and for imaging applications. Key aspects of our approach include
pre-processing contrast enhancement phases and routines for detecting highly distorted and
candidate large motion frames. Perhaps one of the most different aspects of our approach
compared to what has been published previously in this area is the development of a composite
reference frame for the final strip level registration. This general idea was proposed originally by
Stevenson (personal communication). Other methods have been proposed to correct intraframe
distortions, such as the lag bias approach [17,18]. This approach computes the offset values
between adjacent strips that in the absence of distortion should be close to zero and then uses
this eye motion value to generate a dewarped reference frame. Though this method worked well
on synthetic image sequences with simulated eye motion artifacts and on some real AOSLO
image sequences, it failed when eye movements did not hold to the assumptions required for this
approach, such as when one direction of drift predominates or in the case of large amplitude
eye motion. Recently, a hardware based dual scanning solution has been proposed to remove
distortions from scanning systems [27]. An advantage of our approach is that requires no
hardware modifications and can be readily applied to existing datasets.

Our approach for generating a synthetic reference frame by averaging frames (registered at the
frame level) mitigates the intraframe distortions, even in the case of anisotropic or ‘idiosyncractic’
eye movements. The principle of this approach is that because the small intraframe distortions
appear at random locations across the different images, when enough of the images are registered
and averaged, the information from the distorted pixels will be averaged out by the non-distorted
ones dominating. It should be noted that this does not require a substantial number of frames for
the averaging to mitigate the distortion. Moreover, as shown in Visualization 4, our approach
only requires 20–30 images (≤1 second at 30 fps) contributing to the synthetic reference frame
to generate a near distortion-free registered and averaged image, demonstrating the potential of
this algorithm for distortion mitigation in short image sequences. It should be noted that eye
motion on short timescales will often be anisotropic and fail the assumptions required for the lag
bias [18] approach to work effectively. An additional benefit of our synthetic reference frame
approach is that it builds a reference frame with a larger field of view compared to any individual
frame in the sequence, enabling our approach to also measure large amplitude eye motion.

Registration algorithms designed for eye tracking are inherently difficult to assess without
a ground truth reference for comparison. This limitation forced us to utilize approaches for
assessment that had limitations. For one, there were inherent differences between our method
and the comparison algorithm we chose as our benchmark that do not always put them on equal
footing. As we describe above, the benchmark uses a different blink detection method and there
were differences in the strip parameters we used for the AOSLO data. As we show in Suppl. Fig.
S4 in Supplement 1, the intensity threshold-based method we used for blink detection resulted
in differences between the frames labelled as blinks in comparison to the cross-correlation
threshold-based method used by the benchmark [11]. It was our original intention to set all strip
parameters to be identical, however, when doing so for the AOSLO data we found that this would
not reflect the performance that could be achieved with the benchmark algorithm when using its
default settings, so we chose to use those parameters instead. We also tested our approach using
the default benchmark strip parameters and found similar performance (see Supplementary Table
1 in Supplement 1) but increased computational cost due to the larger strip size.

In terms of proportion of tracked frames or strips, we showed that our technique could achieve
very high tracking rates, approaching 99% in most cases. This reflected a substantially greater
proportion of eye motion that could be measured compared to the benchmark, so we were
interested to know if those additional strips were tracked with the same level of precision as

https://doi.org/10.6084/m9.figshare.14213468
https://doi.org/10.6084/m9.figshare.14221700
https://doi.org/10.6084/m9.figshare.14221700


Research Article Vol. 12, No. 4 / 1 April 2021 / Biomedical Optics Express 2369

those that could be successfully tracked by both techniques. Comparison of the registered image
sequences between algorithms using the SD across time method showed that when frames were
successfully registered in each algorithm, a similar reduction in SD across time was seen in the
registered image sequence (Fig. 5). This demonstrates that the additional frames tracked by our
method are registered to a similar level of accuracy at least as it is reflected by this metric. Careful
inspection of the difference histograms shows that there was a small shift in the distribution
towards slightly higher SD in the additional frames successfully tracked by our algorithm that
were dropped by the benchmark (Fig. 5(f)). This small difference could reflect a decrease in the
computation accuracy or that these frames display a higher variation in overall intensity due to
large eye motion. We also observed that the proportion of frames that were untracked by the
benchmark did not vary systematically with subjective image quality (see Table 1). We suspect
that this is because subjective image contrast was the main visual criterion used to define the
three quality levels and that image sequences with higher contrast, but greater amounts of large
motion frames or blinks, could increase the number of untracked frames.

To evaluate whether our technique could successfully track both microsaccades and drifts, we
segmented the microsaccades from the drift epochs in the TSLO image sequences. An example
segmented motion trace is shown in Supplementary Fig. S6 in Supplement 1. Both classes of
fixational eye motion are also seen in the registered image sequences shown in Visualization 1
and the eye trace and corresponding image sequence shown in Visualization 2. Across all 30
TSLO image sequences, we found that we detected ∼0.9 microsaccades per second, on average.
This value is well within the range we expect for normal human observers based on previous
studies [1,4]. This suggests that our strip-based approach successfully measured both drifts and
microsaccades.

Improved strip tracking is beneficial for eye motion measurement applications, but it should
be noted that keeping more frames does not always improve the quality of the final registered
and averaged image for imaging applications (Fig. 6). In certain cases, averaging more strips
or frames can have a detrimental effect on image quality. The need to include more data in
the registered and averaged image is most important for light starved imaging applications like
autofluorescence AOSLO and some forms of non-confocal AOSLO. For example, confocal
AOSLO imaging of photoreceptors may only require a relatively small number of strips per pixel
to be averaged to achieve a high-quality image. In those cases, one likely would only include in
the final averaged images those strips that had the highest cross-correlation threshold. For those
applications, we have generated an averaging and cropping tool that allows the registered image
sequences averaging to be customized to the application.

For evaluating the tracking precision, we developed a tedious manual landmarking approach
and deployed it on several image sequences. This was a suitable method for the TSLO data where
larger vessel landmarks could be reliable marked by our human graders, but it was not useful for
the AOSLO data, as we found the additional structural image detail in AOSLO made it nearly
impossible for the manual graders to reliably mark the same exact structure from frame to frame.
Despite this limitation, we showed that human graders could routinely detect the same structures
reliably and that there were larger differences between the different algorithms than there were
between the different graders.

The ability to track single cells across time within the living eye has long been an overarching
goal for AO ophthalmoscopes. However, we have been limited in our ability to track cells
longitudinally due to our inability to reliably reproduce the same retinal structure in the face
of within-frame distortions from eye movements. Some investigators have taken the approach
of warping the averaged images that they want to compare across images within an imaging
session or across images taken at different timepoints. This is suitable for psychophysical testing
or imaging studies on normal eyes when the retina is not expected to change between imaging
sessions. However, this is unsuitable when the retinal structure is changing such as in progressing
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disease or in response to treatment. The ability we have shown here to reliably reproduce the
same retinal structure (Fig. 7) will facilitate all imaging applications as in all cases we seek to
recapitulate the true arrangement between structures within the imaging field of view. However,
it is the evaluation of cell and gene-based treatments that we think will benefit the most from this
precise level of targeted cell tracking.

Despite our achievements there are several aspects that could still be improved further. For
one, our blink detection approach is simplistic and fails when there are not blinks in an image
sequence. Another aspect that could be improved would be to implement an automatic reference
frame selection step to make this approach fully automated. We currently select the starting
reference frame manually but this could easily be replaced with automatic selection either using
an image quality metric [28] or an algorithm such as that described by Salmon et al. [22].
Another point worth mentioning is the precision of the NCC peak calculation, as this could be
altered to improve the precision of the measurement. At present we only compute the NCC peak
down to single pixel precision. We tested sub-pixel precision for the fine-scale motion tracking
step and found that there was no visible difference in the resulting registered and averaged images.
So, although some applications may require eye motion measurements with sub-pixel precision,
we decided it was not worth the computational cost for our present applications but have left the
option available in our algorithm to do so when needed. Finally, this approach does not capture
the torsional eye motion that can occur during FEMs and that remains unaddressed in current
techniques. In fact, we can see a rotational Glass pattern [29,30] in Fig. 2(a) induced by torsional
fixational eye motion in the synthetic reference, leaving this problem to be solved in future work.

The main practical drawback to our approach is that it takes a long time in its present
implementation to process the data. At present, using CUDA implementations in MATLAB only,
it takes approximately 9 minutes to process 900 frames of data using the parameters outlined
above. However, this long computational time can be reduced through software modifications,
such as porting computationally intensive tasks to other languages or using additional hardware.
Future hardware improvements predicted by Moore’s Law alone should permit the present
method to run at real-time rates in about 7–9 years.

4. Conclusions

We show here that our modifications to the strip-based digital image registration approach for
scanned ophthalmic imaging systems accomplished our primary objectives:

1) Tracks the precise motion of nearly all the images in each sequence for eye motion
measurement and light starved imaging applications.

2) Is sensitive to motion larger than the field of view of a single frame.

3) Reconstructs the spatial arrangement between image features consistently and accurately.

Taken together, these improvements extend the current capabilities of strip-based digital image
registration for eye tracking and imaging applications. Our technique facilitates the study of
fixational eye movements, an emerging area of importance for understanding early changes in
diseases of the eye and brain. It will also enable the tracking of individual cells over time in
health and disease to permit targeted monitoring of individual cells in response to treatment.
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